Extensions 1→N→G→Q→1 with N=C2 and Q=C4×C33⋊C2

Direct product G=N×Q with N=C2 and Q=C4×C33⋊C2
dρLabelID
C2×C4×C33⋊C2216C2xC4xC3^3:C2432,721


Non-split extensions G=N.Q with N=C2 and Q=C4×C33⋊C2
extensionφ:Q→Aut NdρLabelID
C2.1(C4×C33⋊C2) = C8×C33⋊C2central extension (φ=1)216C2.1(C4xC3^3:C2)432,496
C2.2(C4×C33⋊C2) = C4×C335C4central extension (φ=1)432C2.2(C4xC3^3:C2)432,503
C2.3(C4×C33⋊C2) = C3315M4(2)central stem extension (φ=1)216C2.3(C4xC3^3:C2)432,497
C2.4(C4×C33⋊C2) = C62.146D6central stem extension (φ=1)432C2.4(C4xC3^3:C2)432,504
C2.5(C4×C33⋊C2) = C62.148D6central stem extension (φ=1)216C2.5(C4xC3^3:C2)432,506

׿
×
𝔽